Genomic breeding value prediction and QTL mapping of QTLMAS2011 data using Bayesian and GBLUP methods

نویسندگان

  • Jian Zeng
  • Marcin Pszczola
  • Anna Wolc
  • Tomasz Strabel
  • Rohan L Fernando
  • Dorian J Garrick
  • Jack CM Dekkers
چکیده

BACKGROUND The goal of this study was to apply Bayesian and GBLUP methods to predict genomic breeding values (GEBV), map QTL positions and explore the genetic architecture of the trait simulated for the 15th QTL-MAS workshop. METHODS Three methods with models considering dominance and epistasis inheritances were used to fit the data: (i) BayesB with a proportion π = 0.995 of SNPs assumed to have no effect, (ii) BayesCπ, where π is considered as unknown, and (iii) GBLUP, which directly fits animal genetic effects using a genomic relationship matrix. RESULTS BayesB, BayesCπ and GBLUP with various fitted models detected 6, 5, and 4 out of 8 simulated QTL, respectively. All five additive QTL were detected by Bayesian methods. When two QTL were in either coupling or repulsion phase, GBLUP only detected one of them and missed the other. In addition, GBLUP yielded more false positives. One imprinted QTL was detected by BayesB and GBLUP despite that only additive gene action was assumed. This QTL was missed by BayesCπ. None of the methods found two simulated additive-by-additive epistatic QTL. Variance components estimation correctly detected no evidence for dominance gene-action. Bayesian methods predicted additive genetic merit more accurately than GBLUP, and similar accuracies were observed between BayesB and BayesCπ. CONCLUSIONS Bayesian methods and GBLUP mapped QTL to similar chromosome regions but Bayesian methods gave fewer false positives. Bayesian methods can be superior to GBLUP in GEBV prediction when genomic architecture is unknown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions

The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...

متن کامل

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods

The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...

متن کامل

Comparison of five methods for genomic breeding value estimation for the common dataset of the 15th QTL-MAS Workshop

BACKGROUND Genomic breeding value estimation is the key step in genomic selection. Among many approaches, BLUP methods and Bayesian methods are most commonly used for estimating genomic breeding values. Here, we applied two BLUP methods, TABLUP and GBLUP, and three Bayesian methods, BayesA, BayesB and BayesCπ, to the common dataset provided by the 15th QTL-MAS Workshop to evaluate and compare t...

متن کامل

Effects of Marker Density, Number of Quantitative Trait Loci and Heritability of Trait on Genomic Selection Accuracy

The success of genomic selection mainly depends on the extent of linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), number of QTL and heritability (h2) of the traits. The extent of LD depends on the genetic structure of the population and marker density. This study was conducted to determine the effects of marker density, level of heritability, number of QTL, and to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012